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ABSTRACT 

Longitudinal mode beat intensities in a free-running cw HF chemical 

laser have been investigated.    A simple expression has been derived that 

describes the variation of beat intensity with tuning frequency.    Experimen- 

tal observations of the variation of beat intensity with tuning frequency in a 

HF chemical laser agree with the theoretical prediction. 
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I.    INTRODUCTION 

When two or more longitudinal modes oscillate in a laser,  mode 

pulling,   mode pushing,  mode competition,  locking,  population pulsations, 

and related phenomena occur.    These have been described by Lamb's 
1 2-5 semiclassic theory    and by various numerical computations. Experi- 

mental observations of one or more of these phenomena have also been 

made on He-Ne  '     and other lasers. 

The cw HF chemical laser is a potential high-efficiency,   high-power 

gas laser.      ' Its gain medium,  however,   is rather complex due to the 

nature of the chemical reaction,   rotation-vibration transitions,  medium 

nonuniformity,   and mixed inhomogeneous -homogeneous behavior.    Hence, 

it is important to examine the mode competition and mode-pulling behavior 

in a HF chemical laser.    Furthermore,   on the basis of the beat frequency 

between longitudinal modes and the mode-pulling effect in a high-gain 
Q 

medium,   a new active frequency stabilization scheme was conceived. 

Because of the strong mode competition,   the key to the success of this new 

scheme is whether or not a steady beat signal can be obtained. 

The results of a study of the longitudinal mode competition in a cw 

HF chemical laser are reported here.    On the basis of Lamb's semiclassic 

theory,   a simple expression is formulated to describe the effect of mode 

competition and to calculate the variation of beat intensity with tuning 

frequency.    Experimental observations are also given of the Lamb dip, 

mode competition, mode pulling,  beat frequency,   and beat intensity in a 

cw HF chemical laser. 
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II.    THEORY 

The basic equations of Lamb's semiclassic description of a multimode 
1 laser are 

dl _ 

"df = 2In<an " ßnXn "    £   ^V       ' (1) 

m/n 

where I    is the dimensionless intensity for mode n,   &    is the net gain 
n n 

coefficient for mode n,   9        is the cross-saturation coefficient by mode m, 

ß    is the self-saturation coefficient for mode n,   and t is time.    These 
n 

coefficients a  ,   ß   ,   and 9        are functions of population inversion,   cavity 

loss,   and upper- and lower-state decay rates and include spontaneous and 

collisional decay,   Doppler width Ku,   distribution of active medium in the 

resonator,   difference frequency v      - v  ,   and location of the oscillation 

frequencies v    with respect to line center ou.    Exact expressions for these 
n 1 2 

coefficients have been given by Lamb    and by Sayers and Allen. 

For stationary states,   dl   /dt = 0.    Then,   Eq.   (1) becomes 

a-ßI-D0I=Of (2) n     Hn n        *-t    nm m m^tn 

where a    corresponds to the net single-pass unsaturated gain of mode n, 

6   I    is the decrease in that net gain due to saturation of the gain by mode 
n n 

n,   and 9      I     is the decrease in the gain due to the saturation by mode ' nm m 
m. 

The frequency-determining equations,   namely,   the frequency shift 

of mode n caused by anamolous dispersion,  have been derived by Lamb 

and are not discussed here.    This is because,  for free-running lasers, 

phase relations between modes are random   and,  hence,   can be ignored. 
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For single-mode oscillation,   Eq.  (2) is simply 

In      ß 
n 

n 
(3) 

In an inhomogeneously broadened gain medium,   I    can be expressed as 

1=8 n 

r 2 exp \-(u) -v   )   /Ku)' N 

'ab l+-=—X- 2  .  / v2 
y  + (u) - vn) 

(4) 

where N is the relative excitation,   which is the ratio of average population 

inversion and population inversion at threshold,   y ,   is the spontaneous 

emission and inelastic collision contribution to decay of atomic dipole,   and 
y is the atomic dipole decay constant. 

From Eq.   (4),   the cut-off frequency ou    can be obtained by letting 
I    = 0: n 

cju    = au ± Ku^ln N      , (5) 

and the dip condition can be obtained by letting d  I   /dv    £ 0: 

N > 1 + 2 
IKU/ (6) 



For two-mode operation,   the solution of Eq.   (2) is 

ai02 a2921 
*1      ß.ß9 - 9.90 1M2 12u21 

a2ß1 

Z2      ß.ß 

ai912 

1^2 'l2921 
(7) 

Because all these coefficients are complicated functions of v    and physical 

parameters of the gain medium,   only numerical solutions were obtained 

earlier.    These numerical solutions show rapid change in mode intensities 

with change in frequency because of strong mode competition.    In order to 

gain some insight into Lamb's equations and to illustrate the physics of 

the mode competition effect,   a simple model is formulated.    Let 

Then, 

v^; V92i9i; 

S  =2 hQ\l + ^ 
^1621 

ß9 

d =i- 2s 

ß' = ß/e 



2 
I  I    = — 12        2 1    £. ^ 

1 d2 

(p'    +   l)2 (P'    -    1)2J 
(8) 

Now let the mode spacing be v?  - v,  =A and the center frequency be 1/2 

(vj + v2) = CD + Q,   where Q = 0 for mid-tuning,   and Q varies between 0 and 

A/2.    Then,   all the variable p,   0,   s,   and d are functions of Q (see 

Appendix). 

Because both s and 9 are nonzero,   the condition for positive beat 

intensity I.I_ > 0,   is simply ß    < ß_  or P    >  ß      where   ß_ = (1  - d)/ 

(1 + d),   and ß+ = (1 + d)/(l - d).    In region p_ < ß'<  ß      Eq.  (8) is 

negative,  and we set I.I- = 0 because mode intensities I    and I- are 

positive quantities.    If either I    or L = 0,  Eq.   (7) is no longer 

valid,  and the single-mode solution Eq.   (3) has to be used. 

For the cw HF chemical laser studied here,  both the ratio of the 

collision-broadened linewidth to the Doppler linewidth and the ratio of 

cavity intensity to saturation intensity are much smaller than one.    Hence, 

in the range of interest,   0< 0 < A/2,   all the variables s,   d,   9,   and ß' 

are nonzero and are monotonic functions of Q,   except for d = 0 at Q =0. 

In general,   these variables can be approximated by a second-order poly- 

nomial of Q.    The asymptotic form of these variables and a numerical 

example are given in the Appendix.    Both s and 9 vary less than 50% in 

the range 0 < Q < A/2. 

Because s and 0 are nonzero,  monotonic,   and slowly varying functions 
2     2 of 0,   the locations of the maximum values of I.I- and I.I- 9   /s    are very 

close.    Hence,  in order to find the value of 0 at which I.I- is a maximum, 
2     2 

we can let d(I,I_9   /s   )/dß' = 0 and solve for ß '.    Since d< 1,  we have only 
2/3 2/3 

one real root:   ßm = (1 + d       )/(l - d  '   ).    The maximum beat intensity at 

P~, is Km 



3 
d2/3) (9) 

In an analysis of two-mode operation,   Lamb    introduced a coupling 

parameter c s 0._0_ ,/ß,ß~ and observed that the coupling is weak or 

strong as c < 1,   c > 1,   respectively.    Also,  two-mode operation is un- 

stable when c > 1.    In terms of the present notation,   c = (1/ß')   .    We also 

note,  from the definition of ß_ and ß   ,  that ß_ < 1 and ß + > 1. 

The variation of beat intensity with ß' is plotted in Fig.   1.    In 

region ß' <   ß    i.e.,   c > 1,   the coupling is strong,   and the lasing is un- 

stable.    In region ß' > ß     i.e.,   c < 1,   the coupling is weak,   and the lasing 

tends to be stable. 

The variation of I.I- with fi can be obtained by substituting the 

relation ß' = ß'(Q) into Eq.   (8).    Since ß' can be approximated as a second- 

order polynomial of Q,  the variation of beat intensity with 0 is similar in 

Fig.   la,   except that the horizontal scale is shifted,   stretched,  or com- 

pressed nonuniformly.    A typical plot is shown in Fig.   lb. 



17  2 a o 

}(i-d2/V 

1'2 

0    Ü. n+ a m     JL A 
2 

a 

Figure 1.    Characteristic Shape of the Beat Intensity- 
Distribution vs ß' and Q 
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HI.    EXPERIMENTAL RESULTS 

In order to verify the theory,   experiments were carried out with a 

cw HF chemical laser.    The laser output spectra,  beat frequencies,   and 

beat intensities were measured by using a confocal scanning Fabry-Perot 

interferometer,   spectrum analyzer,   and fast InAs detector.    The cw HF 
9 

chemical laser used was described in an earlier paper.       Briefly,   F atoms 

are generated by a discharge in a gas mixture of He,   O^,   and SF/ .    The 

latter is mixed with H?,  which is injected just upstream of a transverse 

optical cavity.    The cavity pressure could vary from 5 to 1 5 Torr.    Typi- 

cal single-line output at 2.87 jam is 0. 5 W.    The gain medium is  10 cm 
_ 1 

long,   and there is a small signal gain of about 0.05 cm 

A stable resonator was used that had a 2-m radius-of-curvature 

total reflector (reflectivity > 95%) and a flat grating (reflectivity 80%) as 

the output coupling.    These were separated by distances of L = 30.6 cm 

and L = 162.6 cm for single-mode and two-mode operation,   respectively.    A 

TEM^p-mode output beam was obtained by using a variable aperture inside 

the resonator.    The total reflecting mirror was mounted on a PZT driver, 

which could move the mirror and scan the laser frequency across the gain 

linewidth.    A schematic of the experimental arrangement is shown in 

Fig.   2. 

In order to measure the beat frequency of the longitudinal modes,   a 

room-temperature InAs detector with risetime less than 3 nsec was used. 

The beat signal was displayed on a Tektronix 7094 oscilloscope and 

analyzed by a Hewlett-Packard spectrum analyzer,  model 8553B.    A 

Burleigh 25-cm confocal scanning Fabry-Perot interferometer with free 

spectrum range of 300 MHz and resolution better than 5 MHz was used to 

analyze the laser output frequency spectrum.    The laser and all the optics 

were mounted on a NRC vibration isolated table. 

-9- 
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Figure 2.    Block Diagram of the Experimental Apparatus 
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For single-mode operation,   a cavity length L = 30.6 cm was chosen. 

The empty cavity mode spacing is then 490 MHz,  which is larger than the 

gain linewidth.    The mode frequency can be continuously scanned through 

the gain linewidth by applying a high voltage on the PZT driver.    A typical 

single-mode laser output intensity as a function of mode frequency is shown 

in Fig.   3.     The Lamb dip in the center is clearly distinguishable,   and the 

cut-off frequency can be determined.    Similar Lamb dip was also observed 
12 in a HF chemical laser by Glaze. 

The saturation behavior results in the appearance of the Lamb dip 

[Eqs.   (4) and (5)].    Its width is related to the radiative interaction width 

of individual molecules.    Hence,  information on collision effects can be 
12   13 obtained by investigating the pressure-dependent behavior of the dip.      ' 

For two-mode operation, a cavity length L = 162.6 cm was chosen. 

The empty cavity mode spacing is then 92.3 MHz, which is much smaller 

than the gain linewidth.    Hence,  multimode operation can be achieved. 

Typical laser output frequency spectra obtained by the scanning 

Fabry-Perot interferometer are shown in Fig.  4.    The vertical scale is 

the laser intensity,   and the horizontal scale is the frequency,   swept at 

28 MHz/div.    The small bump in front of the peak is caused by a misalign- 

ment of the Fabry-Perot interferometer to reduce the coupling between the 

laser and the Fabry-Perot interferometer.    Both traces were obtained by 

the same setup but were taken at 5 sec separation.    The large variations 

of these two mode intensities indicate the strong mode competition effect. 

A typical beat signal intensity distribution as a function of tuning fre- 

quency is shown in Fig.   5.    The upper trace is the driving voltage of the 

PZT driver; the lower trace is the beat signal.    Because of the low sweep 

speed,   each individual oscillation of the beat signal can not be seen.    How- 

ever,   the envelop,  which is the beat intensity,   is clearly discernable. 

The shape of the envelop agrees very well with the theoretical prediction 

(Fig.   1). 

11- 



Figure 3. Oscilloscope Trace of a Single- 
Mode Laser Output Intensity vs 
Mode Frequency. Upper trace: 
driving voltage, 500 v/div, 
which is equivalent to 400 MHz/ 
div. Lower trace: mode inten- 
sity, 200 mV div. Sweep speed, 
5 msec/div. 
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Figure 4.    Typical Two-Mode Laser Output 
Spectra Obtained by a Scanning 
Fabry-Perot Interferometer. 
Verticle scale,   50 rnV/div; hori- 
zontal scale,   28 MHz/div; sweep 
duration,   50 msec.    Lower trace 
taken 5 sec after upper trace. 
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- — ONE CYCLE 

Figure 5.    Oscilloscope Trace of Beat 
Intensity vs Frequency Q. 
Upper trace:    driving voltage, 
500 V/div,   which is equivalent 
to 7 5 MHz/div.    Lower trace: 
beat signal,   50 mV/div. 
Sweep speed,   5 msec/div. 
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For the beat frequency,  two consecutive spectra with time separation 

of 2 sec are shown in Fig.  6.    The center frequency was 88 MHZ,  which 

agrees with Fig.  4.    The beat frequency is smaller than the empty cavity 
7   9   14 

mode spacing value of 92. 3 MHz because of the mode pulling effect.   '   ' 

The width of the spectra is the result of a short-time (10 msec sweep dura- 

tion) laser frequency instability,   and the separation of these two spectra is 

the result of a long-time (2 sec separation) instability.    On the basis of the 

theory developed in Ref.   9,   these correspond to a short-time frequency 

instability of 10 MHz and a long-time (2 sec) frequency instability of 15 MHz. 

These agree with the results obtained by the scanning Fabry-Perot inter- 

ferometer. 
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Figure 6.    Frequency Spectrum of Beat 
Signal.    Center frequency,   88 
MHz; horizontal scale,   100 kHz/ 
div; verticle scale,  log intensity. 
Two consecutive sweeps sepa- 
rated by 2 sec are shown.    Time 
duration for each complete sweep, 
10 msec. 
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IV.    CONCLUSIONS 

A simple expression was obtained for variation of beat intensity with 

a parameter ß',  which is a slowly varying function of the tuning frequency 

Q.    This expression illustrates the general behavior of the beat intensity 

versus tuning frequency that results from mode competition effects.    Fur- 

thermore,   the results are useful for identifying regions of stable two-mode 

operation for use of active frequency stabilization of Ref.  9.    Experimental 

observations are in good agreement with the theory. 
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APPENDIX:   EXACT AND APPROXIMATE EXPRESSIONS 

FOR THE GAIN AND SATURATION COEFFICIENTS 

Exact expressions for the coefficients from Ref.   1: 

an = 4{exp[-(u; - v//(Ku)2] N -  1} F, 

ßn = [ 1 + &(*> - vn)] F3 

mn 
sei n + <2?    »i       " 

4WM 2     Y ab 
[S>  (v      - v  ) + SL (v      - v )] L   av m       n' er m        n'J 

N 
®(u> - vn)    2(™-n) + @ 

V v m        n 
N 

2       2        2 - i where ^(x) = y  /(y    + x ); SMx) = (y    + ia)     ; Rl is the real part; u    is the 

laser frequency in mode n;   y ,  y,   are upper and lower-level decay con- 

stants; y ,   = l/2(-y    + \, ); Y is tne atomic dipole decay constant;  ou is the 
cLD EL D 

line center frequency;   F, = (l/8)(u/Qn)N is the third-order factor in laser 

coefficients;  N is the relative excitation; N2 is the spatial Fourier compo- 

nent of the population inversion density; u/Qn is the cavity bandwidth;  and 

Q    is the cavity quality factor for mode n. 
n 

The asymptotic form when y  , yu,   y < A < Ku,   and 0 < a < 1/2 are: 
cL D 

1/2 
ß =a F3(A + Bo  ) 

1/2 
9 =*F3(C + Da ) 
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s * Fs(E + ff) 

where A,   B,   C,   D,  and E are constants of the order of one,   and a = Q/A. 

For a particular case when v    = -y,   =-y,=v = A/2,  N? = -1/2,  and 

Ku = 2A,  we have,  when a = 0,   ß = 1.32,   0 = 1.45,   ß'= 0.91,  A = 1, 

s = 4,  and d = 0; and a = 1/2,   ß = 1.28,  9 = 1.06,   0'= 1.20,  A = 0.93, 

s = 4 + 1/2N,   and d = 1/2 (4 + 1/2N)"1.  Hence, ß,   6,   ß',   and s are slowly 

varying functions of Q for 0<fi/A < 1/2. 
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